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Abstract

An analytical method has been developed for two-dimensional inverse heat conduction problems by using the

Laplace transform technique. The inverse solutions are obtained under two simple boundary conditions in a finite

rectangular body, with one and two unknowns, respectively. The method first approximates the temperature changes

measured in the body with a half polynomial power series of time and Fourier series of eigenfunction. The expressions

for the surface temperature and heat flux are explicitly obtained in a form of power series of time and Fourier series.

The verifications for two representative testing cases have shown that the predicted surface temperature distribution is

in good agreement with the prescribed surface condition, as well as the surface heat flux.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A procedure to solve Inverse Heat Conduction

Problems (IHCP) is to derive surface heat flux and

temperature from temperature changes inside a solid.

The method proves to be very powerful and useful when

a direct measurement of surface heat flux and tempera-

ture is difficult, due to severe working conditions, such

as those in space vehicle atmosphere re-entry, in acci-

dents involving coolant breaks in the plasma-facing

components, and in the quenching of a high temperature

surface. Recently, the IHCP has been numerically trea-

ted and extended to multiple dimensions with the help of

the development of computer technologies related to

software and hardware and the improvement of com-

puter capability. For example, Hsieh and Su [1] and Bell

[2] employed a differential method; Lithouhi and Beck

[3] employed a finite element method and Shoji and Ono

[4] employed a boundary element method, to formalize

two-dimensional IHCP. Moreover, Huang and Tsai [5]

carried out an analysis to arbitrary boundary condition

estimation inverse problems by using the conjugate

gradient method. The numerical computation, although

it may be efficient in achieving the inverse result, can not

supply us with enough information to understand the

characteristics of the solution and the effect of the in-

fluencing factors. The characteristics of inverse solution

for IHCPs and different approaches are reported [6,7].

Compared to the numerical computation method,

analytical methods to IHCPs could be applied only to

samples with simple geometrical configurations [8–10],

for which the solution may be simple and explicit.

However, they still attract us greatly due mainly to two

important aspects: (1) the characteristics of the whole

solution can be grasped easily; and (2) the time needed

for calculation is rather short. Using the Laplace

transform technique, Imber [9] proposed an approxi-

mate solution in two-dimensional cylindrical geometry,

which, unfortunately, is of low accuracy and therefore

not for practical applications. More recently, with the

same technique and a half polynomial power series of
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time in measured temperature approximation, Monde

and Mitsutake [10] proposed an approximate solution

for one-dimensional IHCP, which predicts the surface

temperature and heat flux with high accuracy. Com-

pared to the conventional analytical method, the Monde

[10] solution is advanced in both stability and reduction

in minimum predictable time.

The above Monde solution [10] has also been suc-

cessfully applied to the measurement of thermal diffu-

sivity [11]. Compared to the conventional method, in

which measurement accuracy is strongly affected by a set

boundary condition, the measurement using the inverse

solution possesses an advantage that it is independent

from the set boundary condition and thereby, is very

easy to handle.

On the base of the same method as that used in

Monde one-dimensional IHCP solution [10], this paper

extends the method to two-dimensional systems. Ana-

lytical inverse solutions are sought for two simple cases.

The method is verified by two simple cases on its ap-

plicability and main characteristics.

2. Formulation of two-dimensional inverse heat conduction

problems

For a homogeneous rectangular sample, the mathe-

matical formulation of the two-dimensional heat con-

duction problem can be written in a dimensionless form

as

oh
os

¼ o2h

on2
þ L2 o

2h
og2

0 < n < 1; 0 < g < 1 ð1Þ

2.1. General solution for the two-dimensional unsteady

heat conduction for two simplest sets of boundary

conditions

Assuming a uniform initial temperature (h ¼ 0) and

applying the Laplace transform to Eq. (1), we obtain in

subsidiary form as

o2h

on2
þ L2 o

2 �hh
og2

� s�hh ¼ 0 ð2Þ

A general elementary solution is [12]

�hhðn; g; sÞ ¼ C0
1 cosðmnÞ

�
þ C0

2 sinðmnÞ
�

� C0
3 cosðng=LÞ

�
þ C0

4 sinðng=LÞ
�

ð3Þ

where m and n are eigenvalues to be determined and

satisfy the relation m2 þ n2 ¼ �s. C0
1, C

0
2, C

0
3 and C0

4 are

integral constants which depend upon the boundary

conditions; therefore, four individual boundary condi-

tions are needed, on the four surfaces. To simplify the

question, we only consider two simplest boundary sets.

Boundary set 1. As shown in Fig. 1, three surfaces are

adiabatic and only one surface boundary condition is

left unknown, which corresponds then to the IHCP so-

lution under analysis:

o�hh
on

¼ 0 at n ¼ 0 and n ¼ 1 ð4aÞ

o�hh
og

¼ 0 at g ¼ 1 ð4bÞ

Nomenclature

Aj coefficients in Eq. (7)

a thermal diffusivity

Bj coefficients in Eq. (7)

bk coefficients in Eq. (8)

Cj coefficients in Eq. (6)

cj coefficients in Eq. (8)

C0
1, C

0
2, C

0
3, C

0
4 coefficients in Eq. (3)

DðnÞ
j;k coefficients for approximating measured

temperature variation in Eq. (9)

Gð1Þ
j;k coefficients in Eq. (18) for set 1

Gðl;mÞ
j;k coefficients in Eq. (19) for set 2

H ð1Þ
j;k coefficients in Eq. (22) for set 1

H ðl;mÞ
j;k coefficients in Eq. (23) for set 2

f ðn; gn; sÞ function for approximating temperatures

on a line g ¼ gn

L aspect ratio (¼ Lx=Ly)

Lx length of a solid in x direction

Ly length of a solid in y direction

mj eigenvalue (mj ¼ jp)

nj constant ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q� �
N degree of approximate polynomial with time

Nj degree of eigenvalue

Nsf order of significant figure

s Laplace operator (s ¼ �ðm2
j þ n2

j Þ)
T temperature

t dimensional time

Tc representative temperature

x; y spatial coordinates

U dimensionless heat flux

h dimensionless temperature (T=Tc)

s dimensionless time (¼ at=L2
x)

s�i dimensionless time lag

n dimensionless distance in x direction (x=Lx)

g dimensionless distance in y direction (y=Ly)
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Boundary set 2. As shown in Fig. 2, surfaces at n ¼ 0

and n ¼ 1 are adiabatic and two boundary conditions on

surfaces g ¼ 0 and g ¼ 1 are unknown:

o�hh
on

¼ 0 at n ¼ 0 and n ¼ 1 ð5Þ

General solutions for the two boundary sets are given

in subsidiary form by Eqs. (6) and (7), respectively.

�hhðn; g; sÞ ¼
X1
j¼0

Cj cosðmjnÞ cos
nj
L
ð1

n
� gÞ

o
ð6Þ

�hhðn; g; sÞ ¼
X1
j¼0

cosðmjnÞfAj sinðnjðg � g1Þ=LÞ

þ Bj cosðnjðg � g2Þ=LÞg ð7Þ

where mj (¼ jp) are the eigenvalues to satisfy Eq. (4a) or

(5), cosðmjnÞ are the corresponding eigenfunctions. Each

value of nj is determined from the relation of m2
j þ

n2
j ¼ �s. The unknown constants Cj in Eq. (6) are

determined using the temperature distribution measured

on one line (g ¼ g1) inside the solid (Fig. 1), whereas the

constants Aj and Bj in Eq. (7) are determined by the

measured temperatures on two different lines (g ¼ g1

and g ¼ g2) inside the solid (see Fig. 2).

In general, the boundary set 2 is more commonly

encountered in practice than the boundary set 1. The

reason the boundary set 1 is discussed is that the number

of the measuring points can be reduced by half, which is

important in practical measurements. Although in the

boundary set 2, there are two unknown boundary sur-

faces, we are interested on study only one of them;

therefore, the inverse solution will only be derived for

the surface of g ¼ 0.

One of the most important characteristics of the

IHCP is that the first measuring line (g ¼ g1) should be

positioned as near as possible to the unknown boundary

surface, to ensure that any disturbance occurring on

the unknown boundary surface can be sensed in time. If

the first measuring line (g ¼ g1) is too far away from the

unknown boundary surface, it becomes impossible to

sense any delicate surface disturbance and consequently

results in a wrong IHCP estimation. How the positions

of the measuring lines influence inverse solution will be

discussed later in detail.

2.2. Approximate equation depicting temperature re-

sponses on lines g1 and g2

In order to determine the constants Cj, Aj and Bj in

Eqs. (6) and (7), we need to formulate the measured

temperature at the lines g ¼ g1 and g ¼ g2. As shown in

Eq. (8), the temperature variations with coordinate of n
and time of s are expressed in forms of eigenfunction

cosðmjnÞ and half polynomial series, respectively.

f ðn; gn; sÞ ¼
XNj

j¼0

cj cosðmjnÞ
XN
k¼0

bðnÞk

Cðk=2þ 1Þ ðs � s�nÞ
k=2

ð8Þ

where cj and bðnÞk are coefficients, and C is the gamma

function [10]. The time, s�n, is a time lag, determined

from erfcðgn=ð2
ffiffiffiffi
s�n

p ÞÞ ¼ minðhÞ, which is the readable

minimum division of temperature in temperature-

measuring instrument.

There are two main reasons to adopt the form of half

polynomial series of time: (1) the general solution of the

heat conduction problem is dependent on the square of

time; (2) one-dimensional IHCP using the form of half

polynomial series of time has obtained the temperature

approximation with good accuracy.

Naturally, one may expect the coefficients in Eq. (8),

i.e., cj and bðnÞk , could be determined separately by using,

0
1

1

ξ 

η

Φ1(ξ)

Adiabatic

Adiabatic

Solid

Φ2(ξ)

η =η1

η =η2

Fig. 2. Illustration of the B.C in the boundary set 2.
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Fig. 1. Illustration of the B.C in the boundary set 1.
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for example, the mean least squares method. However,

since n and s are not orthogonal system, the values of cj
and bðnÞk on two-dimensional regression plane of n and s
cannot be separately determined. To alleviate this diffi-

culty, we introduce coefficients DðnÞ
j;k , which is defined as

DðnÞ
j;k ¼ cjb

ðnÞ
k , to substitute the coefficients cj and bðnÞk . Eq.

(8) then is rewritten as

f ðn; gn; sÞ ¼
XNj

j¼0

XN
k¼1

cosðmjnÞ
DðnÞ

j;k

Cðk=2þ 1Þ ðs � s�nÞ
k=2

ð9Þ

where subscripts j and k in DðnÞ
j;k represent the coefficients

related to eigenvalues and the order of the half poly-

nomial series of time. The superscript (n) represents the

coefficients are derived from the measured temperature

on line g1 or g2.

The increase in both numbers of eigenvalue, Nj, and

the half polynomial series, N , mathematically makes Eq.

(9) approach to the measured temperature better on n
and s coordinates [13]. However, the measured temper-

atures always include some error that hinders Eq. (9) to

uniformly approach the measured ones with increasing

the numbers of j and k. In one-dimensional case, the

number of N was recommended to be smaller than 8,

namely N 6 8, in which good accuracy of the estimation

was guaranteed [10]. Therefore, the number of N smaller

than 8 is employed in this analysis. On the other hand,

the number of eigenvalue Nj is also limited by the un-

certainty in measurement and the number of the mea-

suring points, which will be discussed later.

Procedure to determine the values of DðnÞ
j;k from the

measured temperature usually employs least mean

square method, which is explained in Appendix A. Ap-

plying this procedure to the temperatures measured at

the lines g1 and g2, respectively, we can determine each

set of the coefficients Dð1Þ
j;k and Dð2Þ

j;k . Then performing the

Laplace transform in Eq. (9), we get

�ff ðn; gn; sÞ ¼ e�ss�n
XNj

j¼0

cosðmjnÞ
XN
k¼0

DðnÞ
j;k =s

ðk=2þ1Þ;

n ¼ 1; 2 ð10Þ

2.3. Surface temperature calculation

Applying Eq. (6) to line g1 and Eq. (7) to the lines g1

and g2, setting them equal to Eq. (10), and using the

orthogonal property of cos function, we can determine

coefficients Cj in Eq. (6), Aj and Bj in Eq. (7).

For the boundary set 1,

Cj ¼
e�ss�

1

PN
k¼0 D

ð1Þ
j;k =s

ðk=2þ1Þ

cos
njð1�g1Þ

L

ð11Þ

For the boundary set 2,

Aj ¼
e�ss�

2

PN
k¼0 D

ð2Þ
j;k =s

ðk=2þ1Þ

cos
njðg2�g1Þ

L

ð12Þ

Bj ¼
e�ss�

1

PN
k¼0 D

ð1Þ
j;k =s

ðk=2þ1Þ

cos
njðg1�g2Þ

L

ð13Þ

After these manipulations, we can finally express the

solutions for the temperature change inside the solid

(including boundary surfaces) as

For the boundary set 1,

�hhðn; g; sÞ ¼ e�ss�
1

XNj

j¼0

cosðmjnÞ cos nj
L ð1� gÞ

� �
cos

nj
L ð1� g1Þ

� �
�
XN
k¼0

Dð1Þ
j;k =s

ðk=2þ1Þ ð14Þ

For the boundary set 2,

�hhðn; g; sÞ

¼ e�ss�
1

XNj

j¼0

PN
k¼0

Dð1Þ
j;k

sðk=2þ1Þ sin½ðnj=LÞðg2 � gÞ�
sinfðnj=LÞðg2 � g1Þg

cosðmjnÞ

� e�ss�
2

XNj

j¼0

PN
k¼0

Dð2Þ
j;k

sðk=2þ1Þ sinfðnj=LÞðg1 � gÞg
sinfðnj=LÞðg2 � g1Þg

cosðmjnÞ

ð15Þ

Substitution of nj ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ m2

j Þ
q

into cosðnj=LÞ and

sinfnj=Lðg2 � gÞg turns them into cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ m2

j Þ
q

=L
h i

and i sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ m2

j Þ
q

=L
h i

, respectively. Taking into ac-

count these relations and setting g ¼ 0 in Eqs. (14) and

(15), we can obtain the surface temperature (g ¼ 0) as

For the boundary set 1,

�hhwðn; sÞ ¼ e�ss�
1

XNj

j¼0

cosðmjnÞ cosh
ffiffiffiffiffiffiffiffi
sþm2

j

p
L

� �

cosh

ffiffiffiffiffiffiffiffi
sþm2

j

p
L ð1� glÞ

� �

�
XN
k¼0

Dð1Þ
j;k =s

ðk=2þ1Þ ð16Þ

For the boundary set 2,

�hhwðn;sÞ

¼ e�ss�
1

XNj

j¼0

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

j

q
=L

� �
g2

n o
cosðmjnÞ

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

j

q
=L

� �
ðg2�g1Þ

n o XN
k¼0

Dð1Þ
j;k

sðk=2þ1Þ

� e�ss�
2

XNj

j¼0

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

j

q
=L

� �
g1

n o
cosðmjnÞ

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

j

q
=L

� �
ðg2�g1Þ

n o XN
k¼0

Dð2Þ
j;k

sðk=2þ1Þ

ð17Þ

2138 M. Monde et al. / International Journal of Heat and Mass Transfer 46 (2003) 2135–2148



Expanding the hyperbolic functions in Eqs. (16) and

(17) in series around s ¼ 0, and then performing the

inverse Laplace transform of the resulting expressions,

we can get the unknown surface temperatures

For the boundary set 1,

hwðn; sÞ ¼
XNj

j¼0

XN
k¼�1

Gð1Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�1Þ

k=2 ð18Þ

For the boundary set 2,

hwðn; sÞ ¼
XNj

j¼0

XN
k¼�1

Gð1;2Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�1Þ

k=2

�
XNj

j¼0

XN
k¼�1

Gð2;1Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�2Þ

k=2 ð19Þ

The detailed procedures to calculate the coefficients

of Gð1Þ
j;k , G

ð1;2Þ
j;k and Gð2;1Þ

j;k in Eqs. (18) and (19) are given in

Appendix B.

2.4. Surface heat flux calculation

By differentiating Eqs. (14) and (15) with respect to g,
the heat flux in g direction can be derived and then the

surface heat flux is obtained by setting g ¼ 0.

For the boundary set 1,

Uwðn; sÞ ¼ e�ss�
1

XNj

j¼0

�

ffiffiffiffiffiffiffiffi
sþm2

j

p
L cosðmjnÞ sinh

ffiffiffiffiffiffiffiffi
sþm2

j

p
L

� �

cosh

ffiffiffiffiffiffiffiffi
sþm2

j

p
L ð1� glÞ

� �

�
XN
k¼0

Dð1Þ
j;k =s

ðk=2þ1Þ ð20Þ

For the boundary set 2,

Uwðn; sÞ ¼ e�ss�
1

XNj

j¼0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L

� �
g2

n o
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L

� �
ðg2 � g1Þ

n o

�
XN
k¼0

Dð1Þ
j;k

sðk=2þ1Þ cosðmjnÞ � e�ss�
2

�
XNj

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L

� �
g1

n o
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2

j

q
=L

� �
ðg2 � g1Þ

n o

�
XN
k¼0

Dð2Þ
j;k

sðk=2þ1Þ cosðmjnÞ ð21Þ

In the same way that we derived the surface tem-

perature, in achieving the surface heat flux, we also need

to expand the hyperbolic functions in Eqs. (20) and (21)

in series around s ¼ 0, and then perform the inverse

Laplace transform. The unknown surface heat fluxes are

finally expressed as

For the boundary set 1,

Uwðn; sÞ ¼
XNj

j¼0

XN
k¼�1

H ð1Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�1Þ

k=2 ð22Þ

For the boundary set 2,

Uwðn; sÞ ¼
XNj

j¼0

XN
k¼�1

H ð1;2Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�1Þ

k=2

�
XNj

j¼0

XN
k¼�1

H ð2;1Þ
j;k cosðmjnÞ
Cðk=2þ 1Þ ðs � s�2Þ

k=2 ð23Þ

The detailed manipulations to calculate coefficients

H ð1Þ
j;k , H

ð1;2Þ
j;k and H ð2;1Þ

j;k in Eqs. (20) and (21) is presented in

Appendix B.

For the boundary set 2, the temperature and heat flux

distribution at g ¼ 1 is out of our interest. Actually, any

unknown boundary surface can be predicted from the

above developed solutions by defining the unknown

surface as g ¼ 0 in advance.

3. Verification of the proposed method

In order to verify the applicability of Eqs. (18) and

(22) and Eqs. (19) and (23), we need the temperatures

measured on one or two lines inside the solid. In this

paper, the temperature calculated from a direct solution

is used as the measured temperature. As actual tem-

peratures measured always include some uncertainty, we

superimpose a random error with a normal distribution

on the exact value of the temperature as given by

hðn; gn; sÞ ¼ hexactðn; gn; sÞð1þ 0:5� 10�Nsf eÞ ð24Þ

where hexact is the exact temperature calculated from a

corresponding direct solution, Nsf is the number of sig-

nificant figures and e is a random number generated with

a normal distribution (r ¼ 1:0) and zero mean (m ¼ 0).

Generally, for a temperature measurement with ther-

mocouples, Nsf can be taken as 2 or 3 at most.

Because the boundary set 1 can be considered as a

special case of the boundary set 2 (the heat flux on the

boundary surface defined at g ¼ 1 in Fig. 2 is 0), the

solutions for the boundary set 2, Eqs. (23) and (19), can

also be applied to the problems with the boundary set 1.

Therefore, the following two test cases with the first

boundary set can be used in both verifications of the

solutions for the boundary sets 1 and 2. The boundary
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conditions at g ¼ 0 are prescribed, respectively, as Eqs.

(25) and (26). The two test cases are tentatively em-

ployed, since the direct solutions for these cases are

derived relatively easier, that are given in Appendix C.

Testing case 1:

h ¼ 1 for 0 < n < 0:5 and h ¼ 0 for 0:5 < n < 1:0

at g ¼ 0 ð25Þ

Testing case 2:

U ¼ 1 for 0 < n < 0:5 and U ¼ 0 for 0:5 < n < 1:0

at g ¼ 0 ð26Þ

Fig. 3 shows the temperature distribution at g1 ¼
0:02 for the testing case 2, after being superimposed a

random error. The temperatures are used to determine

the coefficients Dð1Þ
j;k in Eq. (9). Fig. 4 shows the difference

in temperatures between those in Fig. 3 and reproduced

by Eq. (9) using the determined coefficients Dð1Þ
j;k .

It is found from Fig. 4 that the measured tempera-

tures are correctly approximated by Eq. (9), which may

be artificially superimposed as the random error. Fig. 5

shows the estimated surface heat flux obtained with Eq.

(23) for the testing case 2. The temperatures used in the

calculations are on two lines at g1 ¼ 0:02 and g2 ¼ 0:05.
The numbers of the terms, Nj and N used in Eq. (9) are

30 and 5, respectively. The order of significant figures Nsf

is set at 3, which may be considered a fair level of noise

in temperature measurements with thermocouples.

Fig. 6 shows the estimated surface temperature ob-

tained with Eq. (18) for the testing case 1. Fig. 7 shows

the estimated surface heat flux obtained with Eq. (22)

for the testing case 2. The temperatures used in the

calculation are on the line g1 ¼ 0:02. The numbers of Nj,

N and Nsf are kept as the same as those used in the

previous calculation, that is, Nj ¼ 30, N ¼ 5 and Nsf ¼ 3.

Fig. 5 shows that the surface heat flux estimated with

Eq. (23) approaches the given surface heat flux and

agrees with it within an error of a few percent after a

time corresponding to the Fourier number s ¼ 0:02. For

the surface temperature estimated by Eq. (22), it is found

from Fig. 6 that the whole surface temperatures are well

predicted in an error less than 1%, although the esti-

mated surface temperature seems to be deviating slightly

from the given temperature near the discontinuity point

of n ¼ 0:5. For the testing case 2, the inverse solution,

Fig. 3. Temperature distribution at g1 ¼ 0:02 for the testing

case 2, after being superposed random error with a normal

distribution.

Fig. 4. Temperature reproduced from Eq. (9) for the temper-

ature distribution in the Fig. 3.

Fig. 5. Surface heat flux estimated with Eq. (23) for the testing

case 2 at g1 ¼ 0:02 and g2 ¼ 0:05.
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Eq. (19), predicts the surface temperature very well

within an error band of 1%, because no temperature

discontinuity point exists at the surface. However, the

existence of the discontinuity for the surface heat flux at

n ¼ 0:5 makes estimation degrade obvious, and the es-

timated values present an error close 10% in the vicinity

of n ¼ 0:5, as shown in Fig. 5. The overall prediction,

however, despite the existence of the discontinuity point,

is still considered to be satisfactorily accuracy.

To both the testing cases 1 and 2, the inverse solu-

tions of Eqs. (19) and (23) are capable of predicting the

surface temperature and heat flux within an error bound

from 3% to 5%. In general, the prediction of the surface

temperature is better than that of the surface heat flux.

The main reason is related to the temperature distur-

bance imposed by Eq. (24): For the heat flux, the tem-

perature difference between the measuring points

becomes important and it makes level of significant

figure degrade, that is the imposed disturbance be am-

plified.

It is necessary to mention that for the testing case 1,

the temperature on the surface possesses a discontinuity

point at n ¼ 0:5 so that the surface heat flux obtained by

differentiating the temperature with respect to g does not

converge uniformly at n ¼ 0:5. Consequently, the pre-

dicted surface heat flux at n ¼ 0:5 is, of course, diver-

gent. Under such circumstances, only the temperature

estimation is possible from the inverse solution, which is

shown in Fig. 6. Although the surface temperature for

the testing case 2 predicted from Eq. (18) is slightly in-

ferior to that predicted from Eq. (19), it is much better

than the predicted surface heat flux shown in Fig. 7.

It can be concluded from a direct comparison of Figs.

5–7 that the inverse solutions obtained from two mea-

suring lines can estimate the surface temperature, as well

as the surface heat flux, with much higher accuracy than

that obtained from only one measuring line. Therefore,

we recommend Eq. (23), instead of Eq. (22), to be used

in the unknown surface heat flux predictions even under

the boundary set 1 condition.

4. Discussions

4.1. Influence of discontinuous point

As shown in Figs. 4 and 5, a degradation of predic-

tion accuracy is observed near the discontinuity point.

The reason is attributed to the employment of the

Fourier series in the temperature approximation given

by Eq. (9). In other words, the Gibbs phenomenon,

which is a characteristic phenomenon in the Fourier

series [13], becomes apparent near the discontinuity

point of n ¼ 0:5. But, for the location far from the dis-

continuity, the present inverse solution is still available.

4.2. Minimum predictable time

Eqs. (16) and (22) and Eqs. (19) and (23) give out the

surface temperature and heat flux explicitly. However,

based on study of one-dimensional IHCP [10], we expect

that for the Laplace operator, s, Eq. (11) could become

divergent. This characteristic takes place in any inverse

solution including numerical and analytical ones, that is

mathematically verified [6,7], since it takes a time for a

Fig. 6. Surface temperature estimated by Eq. (18) for the test-

ing case 1 at g1 ¼ 0:02 and g2 ¼ 0:05.

Fig. 7. Surface heat flux estimated by Eq. (22) for the testing

case 2 at g1 ¼ 0:02 and g2 ¼ 0:05.
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sensor located at a position in solid to get a signal of the

temperature change. In the inverse Laplace transform,

there necessarily exists a minimum time, only after

which the inverse solutions become applicable. In other

words, only after the minimum time smin, the inverse

solutions developed near s ¼ 0 become predictable. In

the present solutions, the minimum time is about

smin ¼ 0:02, which can be observed from Figs. 5 and 6.

4.3. Influence of the number of eigenvalue Nj and of N

The improvement of the temperature approximation

accuracy in Eq. (9) is considered to be the most impor-

tant and effective way to improve the accuracy of the

whole IHCP estimation. Because Eq. (9) is formulated

using the Fourier series composed of eigenfunctions,

cosðjpnÞ, we may expect to improve the temperature

approximation accuracy through increasing the number

of eigenvalues Nj. However, higher order terms require

an increase in the number of measuring points, which

may cause inconvenience and difficulties in actual ex-

perimental processes. In addition, the higher order terms

in the Fourier series usually makes their values diverge

due to the uncertainties in the measured temperature,

although in the case of error-free values they theoreti-

cally converge and become less important in the whole

series. Therefore, the higher the number of eigenvalue Nj

does not lead to a better solution when the measured

temperatures with an error are employed. The influence

of Nj on the accuracy is dependent upon the error in the

measured data.

To check a possible influence of the number of

eigenvalues Nj, we increased the number to 40. No ob-

vious improvement of the accuracy was observed. In the

future, the accuracy improvement due to the increase of

Nj needs to be examined with concerning the accuracy of

the measured temperature.

As for the number of eigenvalue Nj, Monde and

Mitsutake [10] recently reported that for the case of one-

dimensional IHCP, the number of N , which is the order

of the half polynomial series of time used in approxi-

mating temperature changes, has to range from 5 to 8,

otherwise no improvement is expected.

4.4. Influence of the relative positions of the two temper-

ature measuring lines

To check the influence of the relative positions of the

two temperature measuring lines, we further set the

positions of the two measuring lines to

Combination 1: g1 ¼ 0:05 and g2 ¼ 0:10;
Combination 2: g1 ¼ 0:02 and g2 ¼ 0:10.

With keeping Nj, N and Nsf the same as that used in

the estimation of Fig. 5, we can obtain the estimations

for the combinations 1 and 2. The results are shown,

respectively, in Figs. 8 and 9.

When compared to Fig. 5, which is derived under

g1 ¼ 0:02 and g2 ¼ 0:05, the increase of both distances

from the two measuring lines to the boundary surface

(combination 1) degrades estimation to an error level

around 10%, as shown in Fig. 8. Then keeping the sec-

ond measuring line in the same position (g2 ¼ 0:10) and
shifting the first measuring line closer to the boundary

surface (g1 ¼ 0:02), the estimation is improved to an

error level around 5%, as shown in Fig. 9. Furthermore,

Fig. 8. Surface heat flux estimated by Eq. (23) for the testing

case 2 at g1 ¼ 0:05 and g2 ¼ 0:10.

Fig. 9. Surface heat flux estimated by Eq. (23) for the testing

case 2 at g1 ¼ 0:02 and g2 ¼ 0:10.
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when the first measuring line is kept at the same position

(g1 ¼ 0:02) and the second measuring line is distanced to

0.20, no obvious degradation is observed in the estima-

tion result.

Therefore, only the position of the first measuring

line is considered to be significantly relative to the esti-

mation accuracy. The first measuring line should be

positioned as near as possible to the unknown boundary

surface, to ensure all the disturbances occurring on the

unknown boundary surface can be sensed in time,

whereas the second measuring line can be located far

away from the unknown boundary surface. The position

of g1 is recommended to be smaller than 0.02, if possible.

4.5. Influence of the temperature measurement accuracy

To check the influence of the temperature-measuring

accuracy upon the prediction results, we set the number

of the significant figure Nsf in Eq. (24) to 2, 3 and 1
(error-free). The corresponding results are shown in

Figs. 10, 5 and 11, respectively.

When Nsf is 2, as shown in Fig. 10, the prediction

result is much poorer than that when Nsf is set at 3. The

error in the estimation is about 20%. The IHCP solution

calculated from error-free temperature data, as shown in

Fig. 11, still possesses an error around 4%, which is al-

most the same as that calculated from Nsf ¼ 3. This in-

fluencing tendency tells us about the importance of the

accuracy of the measured data. In actual measurements,

although it is unavoidable that the measured tempera-

ture contains some uncertainty, an effort of employing

high precision instrument may lead directly to an im-

provement of predicting accuracy for the IHCP solution.

If the data of Nsf ¼ 3 are used, then the number of N is

30 enough which are too large in actual measurement.

Next target may be how to reduce from N ¼ 30 to a

suitable number of the measuring points, from which the

temperature profile can be approximated.

4.6. Discussion on the solutions for the two boundary sets

Boundary set 1 is a special case of the boundary set 2

and the solutions for the boundary set 2 can also be used

for the problems with the boundary set 1. But the so-

lutions for the boundary set 1 cannot be used for the

problems with the boundary set 2. The reason the

boundary set 1 is discussed is that the number of

the measuring points can be reduced by half, which in-

terests us very much in practical measurements. As the

measured temperature always includes error, the de-

crease in the measuring points may be helpful in

reducing number of the uncertainties, resulting into a

better estimation. Consequently, we may get the im-

pression that the solutions derived for the boundary set

1 gives more accurate estimation than that derived for

the boundary set 2. However, the verification shown in

Figs. 5 and 7 tells us a contrary result, that is, the inverse

solution of Eq. (22) for the boundary set 1 can be

available after a time of about 0.3, whereas Eq. (23) for

the boundary set 2 can be available after a time of 0.02.

Therefore, Eq. (23) has to be applied, instead of Eq.

(22), even for problems with the boundary set 1. The

reason Eq. (22) gives a worse estimation is that although

the boundary condition at g ¼ 1, being the same role as

g2, is exactly true, the position is too far (farthest) away

from the interested surface.

Fig. 10. Surface heat flux estimated by Eq. (23) for testing case

2 with Nsf ¼ 2 (g1 ¼ 0:02 and g2 ¼ 0:05).

Fig. 11. Surface heat flux estimated for testing case 2 by Eq.

(23) with error-free temperature data (g1 ¼ 0:02 and g2 ¼ 0:05).
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5. Application to moving heat source

In order to check availability of the inverse solutions

of Eqs. (19) and (23), one may apply them to a heat

source moving along the surface, which is often en-

countered in engineering field such as a quench of hot

surface and a conceptual emergency cooling in nuclear

reactor and is one of the severest boundary condition.

We consider another simple case of moving heat sources

along the surface, g ¼ 0, which is expressed as

Uw ¼ 1 for n6 s

Uw ¼ 0 for n > s
ð27Þ

The direct solution for this boundary condition, which is

expressed in Appendix C [14] can give temperatures on

two lines of g1 ¼ 0:02 and g2 ¼ 0:05 where the measur-

ing points on each line are set at 26. Following the same

procedure, we can determine the coefficients DðnÞ
j;k form

these temperatures with the same random error given by

Eq. (24) and then calculate the needed coefficients in Eq.

(23). In the present calculation, the orders of Nj and N in

Eq. (23) are set at 26 and 5, respectively, and the order of

significant figures is set at Nsf ¼ 3.

Fig. 12 shows the calculated result for the moving

heat source and makes it clear that the surface heat flux

for the heat source moving along the surface can be

predicted well within the range from s ¼ 0:02 to 1.126

without discontinuity point around which the accuracy

is degraded up to an error near 10%. It is necessary to

mention that the surface temperatures are well predicted

inside an error band of 1% over the whole range, since

the surface temperature continuously changes. Inciden-

tally, in order to get such a good estimation, we notice

that the measured temperatures should be also approx-

imated at a high accuracy of 0.1% by Eq. (9). However,

for the case of the moving heat source that the measured

temperature in the solid radically changes with time,

especially at a point at which the moving heat source

reaches, Eq. (9) fails in approximating the temperatures

measured over the whole range of the measured time. As

the result, it is found that the inverse solutions also

failed high accurate prediction for both surface tem-

perature and heat flux. Therefore, we introduce a new

method in which the whole time range is divided into

some subdivisions of the time and by which the mea-

sured temperature can be approximated well for each

subdivision using Eq. (9). Finally, the result shown in

Fig. 12 can be obtained by dividing the whole time range

into eight subdivisions.

6. Conclusion

With using the Laplace transform technique, we

achieved inverse solutions for two-dimensional IHCP

for two simple boundary sets, the results are summarized

as the following:

1. Except in the vicinity of discontinuity point, surface

temperature and heat flux can be predicted well over

the whole surface with an error less than a few per-

cent.

2. The minimum predictive time for the proposed IHCP

solution is about smin ¼ 0:02.
3. The position of the first measuring line g1 in the solid

is recommended to be as near as possible to the inter-

ested unknown boundary surface and not to be far-

ther than 0.02.

4. Eq. (23), instead of Eq. (22), is recommended for es-

timating surface heat flux even for the boundary set 1

condition.

5. In order to predict the surface temperature and heat

flux from the proposed IHCP solution successfully,

a high precision instrument that can ensure measured

temperature at uncertainty level less than 0.1%,

namely Nsf ¼ 3 at least, is recommended.

Appendix A. Procedures for determining D
ðnÞ
j;k in Eq. (9)

The determination to DðnÞ
j;k is the base for obtaining

the inverse solution. We explain two procedures to cal-

culate the coefficients.

Procedure 1. To a concrete measuring point (n ¼ ni) on

gn, Eq. (9) can be rewritten to

f ðni; gn; sÞ ¼
XNk

k¼0

X1
j¼0

cosðmjniÞ
DðnÞ

j;k

Cðk=2þ 1Þ

" #
ðs � s�nÞ

k=2

0
0.2

0.4
0.6

0.8
1

0.020

0.271

0.556

0.841

1.126
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

φw [-]

ξ [-]

τ [-]

Fig. 12. Surface heat flux calculated from Eq. (23) for moving

heat source using time partition method.
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If we define P ðnÞ
j;k ¼

P1
j¼0 cosðmjniÞDðnÞ

j;k , the above equa-

tion is then rewritten to

f ðni; gn; sÞ ¼
XNk

k¼0

P ðnÞ
j;k

Cðk=2þ 1Þ ðs � s�nÞ
k=2

When temperature change along time at a concrete

measuring point (n ¼ ni) is known, coefficients P ðnÞ
j;k

(k ¼ 0; 1; 2; . . . ;Nk) can be calculated from the mean

least squares method. Repeat the process to all the

measuring points (totally Nj points) on the line gn, co-

efficients P ðnÞ
j;k (j ¼ 1; 2; . . . ;Nj and k ¼ 0; 1; 2; . . . ;Nk) are

obtained and then under a constant k, calculate DðnÞ
j;k

(j ¼ 1; 2; . . . ;Nj). Repeat the process to all the possible

values of k (k ¼ 0; 1; . . . ;Nk), and then the coefficients

DðnÞ
j;k (j ¼ 1; 2; . . . ;Nj and k ¼ 0; 1; . . . ;Nk) can be deter-

mined. The DðnÞ
j;k determination procedure tells us obvi-

ously that the degree of eigenvalue is restricted by the

number of the measuring points.

Procedure 2. Another way is to consider an element of

Qj;kðn; sÞ ¼ cosðmjnÞðs � s�nÞ
k=2

=Cðk=2þ 1Þ. The value of

any element is known for the measured values of n and s.

f ðn; g; sÞ ¼
XN
k¼0

XNj

j¼0

DðnÞ
j;k Qj;kðn; sÞ

A set of linear equation for DðnÞ
j;k can be obtained for each

point of (nl; sm). These sets can be solved directly to

satisfy the requirement of the mean least square by ap-

plying the modified Gram–Schmidt method, which was

opened in Fortran 77 textbook.

Appendix B

The Laplace-transformed surface temperature and

heat flux can be written in a form of �hh ¼ �ff ðsÞKðsÞ, where
�ff ðsÞ and KðsÞ are temperature approximate function and

kernel function (see Table 1), respectively. To get the

solution of IHCP (surface heat flux and temperature),

the inverse Laplace transform, which is written in the

following equation, is performed to �hh:

hðsÞ ¼ 1

2pi

Z cþi1

c�i1
ess �hhðsÞds

In this research, the above complex integral is carried

out after the kernel function KðsÞ is extended around

s ¼ 0. The surface temperature and heat flux then can be

expressed in form of KðsÞ.
In spite of coordinate systems, kernels of K1;jðsÞ and

K2;jðsÞ for the set 1 and KðlÞ
1;j ðsÞ and KðlÞ

2;j ðsÞ (l ¼ 1; 2) for

the set 2 expanded in a series around s ¼ 0 are always

written in a common form:

KðlÞ
1;j ðsÞ ¼ Co

ðlÞ
1;j

X1
n¼0

cðlÞn;js
n

and

KðlÞ
2;j ðsÞ ¼ Co

ðlÞ
2;j

X1
n¼0

dðlÞ
n;j s

n; l ¼ 1; 2

The coefficients cðlÞn;j and d ðlÞ
n;j are also written in similar

form as

cðlÞn;j ¼
1

g0

Xn
i¼0

xðlÞi;j hn�i;j

and

dðlÞ
n;j ¼

1

g0

Xn
i¼0

yðlÞi;j hn�i;j; l ¼ 1; 2

where hi;j is calculated from the following listed equa-

tions. The calculation to the employed item gi;j and co-

efficients xðlÞi;j , y
ðlÞ
i;j are listed in Table 2.

h0;j ¼ 1

h1;j ¼ � g1;j

h2;j ¼ � g2;j þ g2
1;j

h3;j ¼ � g3;j þ 2g1;jg2;j � g3
1;j

h4;j ¼ � g4;j þ ð2g1;jg3;j þ g2
2;jÞ � 3g2

1;jg2;j þ g4
1;j

h5;j ¼ � g5;j þ 2ðg1;jg4;j þ g2;jg3;jÞ � 3ðg2
1;jg3;j þ g1;jg2

2;jÞ
þ 4g3

1;jg2;j � g5
1;j

..

.

With rearrangement, �hhwðsÞ and /wðsÞ are derived as:

(1) For the boundary set 1,

�hhwðsÞ ¼ e�ss�
1

XNj

j¼0

XN
k¼0

Dð1Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co1;jcn;jsn

¼ e�ss�
1

XNj

j¼0

XN
k¼�1

Gð1Þ
j;k s

n cosðmjnÞ

Table 1

Surface temperature Surface heat flux

Boundary set 1 �hh ¼
PNj

j¼0
�ff1ðsÞK1;jðsÞ U ¼

PNj

j¼0
�ff1;jðsÞK2;jðsÞ

Boundary set 2 �hh ¼
PNj

j¼0
�ff1ðsÞKð2Þ

1;j ðsÞ � �ff2ðsÞKð1Þ
1;j ðsÞ

n o
U ¼

PNj

j¼0
�ff1;jðsÞKð2Þ

2;j ðsÞ � �ff2;jðsÞKð1Þ
2;j ðsÞ

n o

M. Monde et al. / International Journal of Heat and Mass Transfer 46 (2003) 2135–2148 2145



UwðsÞ ¼ e�ss�
1

XNj

j¼0

XN
k¼0

Dð1Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co2;jdn;jsn

¼ e�ss�
1

XNj

j¼0

XN
k¼�1

H ð1Þ
j;k s

n cosðmjnÞ

where

Gð1Þ
j;�1 ¼

XNk

k¼0

Dð1Þ
j;2kþ1Ej;kþ1; l ¼ �1; Nk ¼ IntfðN � 1Þ=2g

Gð1Þ
j;l ¼

XNk

k¼0

Dð1Þ
j;2kþlEj;k ; 06 l6N ; Nk ¼ IntfðN � lÞ=2g

H ð1Þ
j;�1 ¼

XNk

k¼0

Dð1Þ
j;2kþ1Fj;kþ1; l ¼ �1; Nk ¼ IntfðN � 1Þ=2g

H ð1Þ
j;l ¼

XNk

k¼0

Dð1Þ
j;2kþ1Fj;k ; 06 l6N ; Nk ¼ IntfðN � lÞ=2g

and Gð1Þ
j;l and H ð1Þ

j;l are coefficients of Eqs. (18) and (22),

respectively, and Ej;k ¼ Co1;jck;j and Fj;k ¼ Co2;jdk;j

(2) For the boundary set 2,

�hhwðsÞ ¼ e�ss�
1

XNj

j¼0

XN
k¼0

Dð1Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co
ð2Þ
1;j c

ð2Þ
n;j s

n

� e�ss�
2

XNj

j¼0

XN
k¼0

Dð2Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co
ð1Þ
1;j c

ð1Þ
n;j s

n

¼ e�ss�
1

XNj

j¼0

XN
k¼�1

Gð1;2Þ
j;k

sðk=2þ1Þ cosðmjnÞ

� e�ss�
2

XNj

j¼0

XN
k¼�1

Gð2;1Þ
j;k

sðk=2þ1Þ cosðmjnÞ

Table 2

Kernel KðsÞ and its coefficients

Surface temperature (K1;jðsÞ) Surface heat flux (K2;jðsÞ)
(1) For the boundary set 1

Kernel KðsÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

1
L

n o
cosh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

1�g1
L

� �n o
ffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

L sinh
ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

1
L

n o
cosh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

1�g1
L

� �n o
mj ¼ 0 (j ¼ 0) Coefficients of KðsÞ af-

ter expansion

xn;0 ¼ 1
ð2nÞ!

1
L

� �2n
y0;0 ¼ 0, yn;0 ¼ 1

ð2n�1Þ!
1
L

� �2n�1 ðnP 1Þ

Coefficients Coj Co1;0 ¼ 1 Co2;0 ¼ 1
L

Common item gn;0 ¼ 1
ð2nÞ!

1�g1
L

� �2n
mj > 0 (j > 0) Coefficients of KðsÞ af-

ter expansion

xn;j ¼
P

k¼n
kCn
ð2kÞ!

1
Lð Þ2km2ðk�nÞ

j

cosh mj
1
Lð Þ y0;j ¼ 1,

yn;j ¼
P

k¼n�1

kþ1Cn
ð2kþ1Þ!

1
Lð Þ2kþ1

m2ðkþ1�nÞ
j

mj sinh mj
1
Lð Þ ðnP 1Þ

Coefficients Coj Co1;j ¼
cosh mj

1
Lð Þ

cosh mj
1�g1
L

� �� � Co2;j ¼ 1
L

mj sinh mj
1
Lð Þ

cosh mj
1�g1
L

� �� �
Common item gn;j ¼

P
k¼n

kCn
ð2kÞ!

1�g1
L

� �2k
m2ðk�nÞ
j

cosh mj
1�g1
L

� �� �
Surface temperature ðKðlÞ

1;j ðsÞÞ Surface heat flux ðKðlÞ
2;j ðsÞÞ

(2) For the boundary set 2

Kernel KðsÞ
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

gl
L

n o
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

g2�g1
Lð Þ

n o
ffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

L cosh
ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

gl
L

n o
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm2

jð Þ
p

g2�g1
Lð Þ

n o

mj ¼ 0 (j ¼ 0) Coefficients of KðsÞ af-

ter expansion

xðlÞn;0 ¼ 1
ð2nþ1Þ!

gl
L

� �2nþ1
yðlÞn;0 ¼ 1

ð2nÞ!
gl
L

� �2n
Coefficients Coj Co

ðlÞ
1;0 ¼ 1 Co

ðlÞ
2;0 ¼ 1

L

Common item gn;0 ¼ 1
ð2nþ1Þ!

g2�g1
L

� �2nþ1

mj > 0 (j > 0) Coefficients of KðsÞ af-

ter expansion

xðlÞn;j ¼
P

k¼n
kCn

ð2kþ1Þ!
gl
Lð Þ2kþ1

m2ðk�nÞþ1
j

sinh mj
gl
Lð Þ yðlÞn;j ¼

P
k¼n

kCn
ð2kÞ!

gl
Lð Þ2km2ðk�nÞ

j

coshðmj
gl
L Þ

Coefficients Coj Co
ðlÞ
1;j ¼

sinh mj
gl
Lð Þ

sinh mj
g2�g1

Lð Þf g Co
ðlÞ
2;j ¼ 1

L

mj cosh mj
gl
Lð Þ

sinh mj
g2�g1

Lð Þf g

Common item gn;j ¼
P

k¼n
kCn

ð2kþ1Þ!
g2�g1

Lð Þ2kþ1
m2ðk�nÞþ1

j

sinh mj
g2�g1

Lð Þf g
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UwðsÞ ¼ e�ss�
1

XNj

j¼0

XN
k¼0

Dð1Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co
ð2Þ
2;j d

ð2Þ
n;j s

n

� e�ss�
2

XNj

j¼0

XN
k¼0

Dð2Þ
j;k cosðmjnÞ
sðk=2þ1Þ

X1
n¼0

Co
ð1Þ
2;j d

ð1Þ
n;j s

n

¼ e�ss�
1

XNj

j¼0

XN
k¼�1

H ð1;2Þ
j;k

sðk=2þ1Þ cosðmjnÞ

� e�ss�
2

XNj

j¼0

XN
k¼�1

H ð2;1Þ
j;k

sðk=2þ1Þ cosðmjnÞ

where

Gðl;mÞ
j;�1 ¼

XNk

k¼0

DðlÞ
j;2kþ1E

ðmÞ
j;kþ1; l ¼ �1; Nk ¼ IntfðN � 1Þ=2g

Gðl;mÞ
j;l ¼

XNk

k¼0

DðlÞ
j;2kþlE

ðmÞ
j;k ; 06 l6N ; Nk ¼ IntfðN � lÞ=2g

H ðl;mÞ
j;�1 ¼

XNk

k¼0

DðlÞ
j;2kþ1F

ðmÞ
j;kþ1; l ¼ �1; Nk ¼ IntfðN � 1Þ=2g

H ðl;mÞ
j;l ¼

XNk

k¼0

DðlÞ
j;2kþlF

ðmÞ
j;k ; 06 l6N ; Nk ¼ IntfðN � lÞ=2g

and Gðl;mÞ
j;l and H ðl;mÞ

j;l are coefficients of Eqs. (19) and

(23), respectively, and EðmÞ
j;k ¼ Co

ðmÞ
1;j c

ðmÞ
k;j and F ðmÞ

j;k ¼
Co

ðmÞ
2;j d

ðmÞ
k;j .

Appendix C. Direct solutions for three different boundary

conditions

The direct solutions can be expressed as

(1) For the testing case 1,

hexactðn; g; tÞ

¼ 2

p

X1
j¼1

sinðjp=2Þ cosðjpnÞ
j

coshfð1� gÞ jp=Lg
coshðjp=LÞ

� 2

p3

X1
j¼1

X1
k¼0

2
sinðjp=2Þ cosðjpnÞ

j

� L2p ð2k þ 1Þ sinfð2k þ 1Þgp=2ge� L2
4
ð2kþ1Þ2þj2

� �
p2t

fL2ð2k þ 1Þ2=4þ j2g

þ 1

2
� 2

p

X1
k¼0

sinfð2k þ 1Þgp=2ge�ðL2ð2kþ1Þ2=4Þ p2 t

ð2k þ 1Þ

(2) For the testing case 2,

hexact ¼
1

2

1

2!
ð1

�
� gÞ2 þ t � 1

3!

�

� 1

p2

X1
k¼1

L2 cosðkpgÞe�ðLkpÞ2t

k2

þ 2L
p2

X1
n¼0

ð�1Þn cosfð2nþ 1Þpng
ð2nþ 1Þ

� coshfð2nþ 1Þp ð1� gÞ=Lg
sinhfð2nþ 1Þp=Lg

� 2L2

p2

X1
n¼0

ð�1Þn cosfð2nþ 1Þpnge�ð2nþ1Þ2p2 t

ð2nþ 1Þ2

� 4L2

p3

X1
n¼0

X1
k¼1

ð�1Þn

� cosfð2nþ 1Þpng cosðkgpÞe�½ð2nþ1Þ2þðLkÞ2 �p2 t

fð2nþ 1Þ2 þ ðLkÞ2gð2nþ 1Þ

(3) For the moving heat source [14],

hðn; g; sÞ ¼ h1ðn; g; sÞ þ h2ðn; g; sÞ þ h3ðn; g; sÞ
þ h4ðn; g; sÞ

where

h1ðn; g; sÞ ¼ C1q0b
s2

2

h2ðn; g; sÞ ¼
X1
j¼1

2C1q0L2 cosðjpnÞ
ðjpÞ4 þ ðjpbÞ2

�
jpsinðjpbsÞ � b

� cosðjpbsÞ þ be�ðjpÞ2s
�

h3ðn; g; sÞ ¼
X1
k¼1

2C1q0b
cosðkpgÞ
ðkpÞ2

s

 
� 1

ðLkpÞ2

þ 1

ðLkpÞ2
e�ðLkpÞ2s

!

h4ðn; g; sÞ ¼
X1
j¼1

X1
k¼1

4C1q0L2 cosðjpnÞ cosðkpgÞ
ððjpÞ2 þ ðLkpÞ2Þ2 þ ðjpbÞ2

� ðjpÞ2 þ ðLkpÞ2

jp
sinðjpbsÞ

 
� b cosðjpbsÞ

þ be�½ðjpÞ2þðLkpÞ2 �s

!

and b ¼ ðu0LxÞ=a, C1 ¼ Ly=ðkTcÞ, respectively. For this

moving heat source, heat flux, q0 and non-dimensional

parameter, b are set at q0 ¼ 1 and b ¼ 1. The problem

with time and space variable heat flux over a boundary

is treated with by Beck et al. [14].
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